
UNIX 101

or ”How to feel like a true hack3r”

myps

Tuesday 17th May, 2022

myps

Contents

1

myps

1 Foreword

1.1 Objective

Welcome to myps! The goal of this subject is to dig into Linux concepts by rewriting some function-
alities of the popular command line tool ps.

1.2 Notions required

Before digging into the subject, here are the pre-requisite. Make sure you can do the following things:

– Use a terminal, run commands on a UNIX environment
– Code simple programs
– Navigate in a UNIX filesystem
– Create commits and push code to a distant git repository
– Code simple CLI applications

2 Setup

You need a Linux machine, a text editor and a working development environment.

Any language can work; if you need guidance on eithr Python or C, check out the following sections.
They briefly go over the installation of the tools you need to start working.

2.1 Python

If python3.5 (or more) is not installed, run sudo apt install python3-pip. That should be enough
to install an interpretor.

2.2 C

To make sure you have everything set up, run sudo apt install gcc binutils make. That should
be enough.

3 Evaluation

3.1 Instructions

You are asked to constituate a team of 2 persons. You will be graded as a team on the quality of
your code, the number of level passed and the quality of your explanation regarding your work.

You have to deliver your code before Wednesday 15th December, 2021, 7:00 AM.

2

myps

3.2 Expected output

The expected output is a git repository, hosted on a public platform like Github. The reposi-
tory should host code that either compiles to a myps binary or that can be interpreted through a
./myps.<extension> entrypoint, where <extension> is th extension of the programming language
(e.g. py).

3.3 A word on cheating

You have to remember that you should be studying for your own good. Cheating will not bring you
any good in the long term; it is fine not to be able to finish every exercise of the subject, your main
goal is to train and learn things.

Any form of cheating will immediately bring your grade down to 0. Additionally, your main teacher
will be taken notice of that.

Note: Changing the name of some variables will of course not trick the anti-cheat engine :)

4 Subject

4.1 Objective

The goal of this subject is to rewrite some functionalities of ps(1). Recoding elementary UNIX
utilities is an incredibly effective way to learn more about UNIX systems inner workings.

This subject will make you learn in-depth notions regarding Linux processes: pid, parenting, processes
statuses, etc. Also, you will learn about the /proc/ filesystem, an API to the Linux kernel.

4.2 Walkthrough

The subject is delimited in levels. The first levels are pre-requisite so you can build myps core features.
The mid-levels are the main features of myps. The last levels describe more difficult features. Sections
labelled Bonus are optional.

Levels should be completed one after another. Commit often, push often, ask for help whenever you
are blocked.

4.3 How does ps work?

The goal of this subject is to understand how ps work by rewriting it. However, we will cover the
fundamentals in this section so you know where to begin and where to look for information.

3

myps

ps(1) is a program written in C. Its goal is to display to the user information regarding the currently
running processes on the system. To keep things simple, we can consider that a process is an
instance of a program. The information that ps(1) can display include the likes memory usage,
process identifiers (PIDs), CPU time used since process launch, etc. It is a widely used tool in the
UNIX world and you may have already used it.

ps(1) runs without specific permissions; yet, it can grab so much information! It looks complicated,
but in reality, that program is merely an interface. In fact, its only made of around 10 000 lines of
code! Processes information is made available by the kernel and the sole job of ps(1) is to gather
them and format them nicely for the user.

There are a few APIs that the kernel exposes. The one that ps(1) uses (and that you are going
to use to) is the /proc/ filesystem. It is a pseudo-filesystem which provides an interface to kernel
data structures. To keep things simple, think about it as some kind of data store where useful
kernel information is readable. This information is made available through files that you can read in
/proc/*. Try it!

$ls /proc/

ls /proc/

1 1606 21 25 299 4 439 623 80 bus

execdomains key -users misc self tty

10 17 2126 2532 30 414 468 659 81 cgroups fb

keys modules slabinfo uptime

1017 18 2128 2551 308 417 471 668 82 cmdline

filesystems kmsg mounts softirqs version

11 19 2129 2552 309 422 476 675 822 consoles fs

kpagecgroup mtrr stat

version_signature

116 2 22 26 32 423 525 7 83 cpuinfo

interrupts kpagecount net swaps vmallocinfo

12 20 2203 27 34 424 6 716 89 crypto

iomem kpageflags pagetypeinfo sys vmstat

13 203 2204 274 35 425 618 78 9 devices

ioports loadavg partitions sysrq -trigger zoneinfo

14 204 23 28 356 426 619 79 98 diskstats irq

locks sched_debug sysvipc

15 205 2378 29 357 437 620 798 acpi dma

kallsyms mdstat schedstat thread -self

16 208 24 298 36 438 622 8 buddyinfo driver

kcore meminfo scsi timer_list

4

myps

You may have already used the command uptime(1). It gives you the information on how long the
system has been up and running since last reboot.

$uptime
00:13:09 up 14:59 , 1 user , load average: 0.00, 0.00, 0.00

Now, notice how there is a file named /proc/uptime. If we read its content, we obtain this:

$cat /proc/uptime

54049.70 53908.20

By reading the man page of procfs (man procfs), the documentation indicates that this file contains
two numbers (values in seconds): the uptime of the system (including time spent in suspend) and the
amount of time spent in the idle process.

There is a pretty good chance that we can rewrite the program uptime by reading that file.

This is just an example of what kind of information /proc/ exposes. It contains directories named
after numbers. Those numbers reference processes identifiers (pid). Inside each directory, there are
files containing information related to the given pid. Those are read by ps(1) to report information.
This is the magic behind ps(1).

4.4 Reference documentation

– procfs documentation: Your main entry point to understand what files reference what in
the /proc filesystem

– ps man page: Your main entry point regarding ps(1) options
– ps source code: I do not recommend using it unless for very specific use cases. It is difficult

to read and understand, so only take a look there if you are desperate

4.5 Ready?

Your goal is to write a program that works like ps(1). We will start small and add features level
by level. At all times, you should be able to compare your program with the official one, for the
features you recoded. They should behave the exact same way. Ensuring that myps behaves exactly
like ps(1) will allow you to know if you are on the right track, debug some features and brag about
your skills!

5

https://man7.org/linux/man-pages/man5/procfs.5.html
https://man7.org/linux/man-pages/man1/ps.1.html
https://gitlab.com/procps-ng/procps/-/blob/master/ps/

myps

4.6 Level 1: Columns and padding

4.6.1 Objective

The goal of this level is to code the building blocks of your program. Your program may correctly
retrieve processes information, if it cannot display it correctly, it is all for nothing.

Your goal is to implement the -o option of ps(1). ps -o allows one to select which columns should
be displayed. By default, ps displays the columns PID, TTY, TIME and CMD:

$ps
PID TTY TIME CMD

2204 pts/0 00:00:00 bash

2566 pts/0 00:00:00 ps

Explicitely setting the -o option selects which columns are going to be printed out:

$ps -o pid ,time

PID TIME

2204 00:00:00

2568 00:00:00

To pass this level, you should write a program that accepts the -o option. It authorized column
names are, for now, PID, PPID and CMD.

As our program does not yet retrieve processes information, no data should be displayed under
column names.

4.6.2 Example usage

$./myps -o pid

PID

$./myps -o pid ,ppid

PID PPID

$./myps -o pid ,ppid ,command

PID PPID COMMAND

$./myps -o pid ,command ,ppid

PID COMMAND PPID

6

myps

4.6.3 Help

Notice the padding? Each column has its own padding rules.

The reference can be found in the source code, here. The width column indicates how many charac-
ters long the column should be. The RIGHT mention indicates that the column should be padded
to the right. A LEFT mention or no mention at all seems to indicate that the column should be
padded to the left. The rule of thumb seems to be ”pad left for text” and ”pad right for numbers”.

In the example, PPID is has a width of 5 and is padded to the right. On the other hand, COMMAND
has a width of 27 and is padded to the left.

4.6.4 Bonus

If you play with ps(1) a bit, you can notice that a column’s padding behave differently if it the last
column displayed. Find out what the rule is and implement it.

4.7 Level 2: Display a specific process information

Now that we can output some columns, we will implement the -p option. -p gives information on
a given process, identified by its pid. You are not asked to handle the case where multiple pids are
given to -p (e.g. ps -p 1,10)

$ ps -p 1

PID TTY TIME CMD

1 ? 00:00:01 systemd

Since we did not recode the TTY, TIME and CMD information retrieval, you are only asked to
print relevant information for the PID column. Typically, your program should handle this kind of
invocations: ps -p <PID> -o pid. If the given pid does not relate to a running process, only print
the column names.

4.7.1 Example usage

$ps -p 1 -o pid

PID

1

$ps -o pid -p 10

PID

10

$ps -p 1111111 -o pid

PID

7

https://gitlab.com/procps-ng/procps/-/blob/master/ps/output.c#L1479

myps

You are asked to print relevant information only for the PID column.

4.8 Level 3: Parent pid

To validate this level, the -o option of your program should handle the ppid argument. Typically,
your program should handle this kind of invocations: ps -p <PID> -o pid,ppid.

When in doubt with what the implementation should be, refer to ps(1). The information you look
for should live somewhere in /proc/<pid>/. Refer to procfs(5).

4.8.1 Example usage

$ps -o pid ,ppid -p 10

PID PPID

10 2

$ps -o pid ,ppid -p 1

PID PPID

1 0

$ps -o ppid ,pid -p 1

PPID PID

0 1

$ps -o pid ,ppid -p 1

PID PPID

1 0

$ps -o ppid -p 10

PPID

2

4.9 Level 4: Command column

Similarly to last level, you are asked to handle the command argument for the -o option. Beware, -o
command is different from -o cmd! In case of doubt, once again, refer to ps(1)’s behavior.

4.9.1 Example usage

$ps -o pid ,ppid ,command -p 3809

PID PPID COMMAND

3809 3705 sshd: vagrant@pts /0

$ps -o pid ,ppid ,command -p 10

PID PPID COMMAND

8

myps

10 2 [migration /0]

$ps -o pid ,ppid ,command -p 1

PID PPID COMMAND

1 0 /sbin/init

$ps -o pid ,command ,ppid -p 5

PID COMMAND PPID

$ps -o pid ,command ,ppid -p 6

PID COMMAND PPID

6 [mm_percpu_wq] 2

$ps -o command ,ppid ,pid -p 3809

COMMAND PPID PID

sshd: vagrant@pts /0 3705 3809

$ps -o command ,ppid ,pid -p 3915

COMMAND PPID PID

bash -c while true ;do slee 3810 3915

4.9.2 Help

– Notice how the command is sometimes displayed with [&] while sometimes it is not.
– Notice how the value of command is truncated in the last example.

4.10 Level 5: Display multiple processes

To pass this level, you are asked to fully implement the -p flag so it can be given multiple pids.

4.10.1 Example usage

$ps -o pid ,ppid ,command -p 1,10

PID PPID COMMAND

1 0 /sbin/init

10 2 [migration /0]

$ps -o pid ,ppid ,command -p 1 ,10 ,88888

PID PPID COMMAND

1 0 /sbin/init

10 2 [migration /0]

9

myps

4.11 Level 6: Display all processes!

To pass this level, you are asked to implement the -e flag. This flag makes ps(1) display information
on all currently running processes.

4.11.1 Example usage

$ps -e -o pid ,ppid ,command | tail -n 10

1102 1 /lib/systemd/systemd --user

1103 1102 (sd -pam)

1598 696 sshd: vagrant [priv]

1686 1598 sshd: vagrant@pts /1

1687 1686 -bash

1811 2 [kworker/u2:0]

1886 2 [kworker/u2:1]

1985 2 [kworker/u2:2]

1986 1687 ps -e -o pid ,ppid ,command

1987 1687 tail -n 10

4.12 Level 7: Display processes related to the current terminal

To pass this level, you are asked to implement the behavior when neither -e is given nor -p. In this
case, ps(1) displays process information related to the processes related to the current terminal

4.12.1 Example usage

$ps -o pid ,command

PID COMMAND

1687 -bash

2039 ps -o pid ,command

$while true ; do sleep 1 ; done &

[1] 2040

$ping 8.8.8.8 > /dev/null &

[2] 2068

$ps -o pid ,command

PID COMMAND

1687 -bash

2040 -bash

2068 ping 8.8.8.8

2075 sleep 1

10

myps

2076 ps -o pid ,command

4.13 Level 8 and beyond (bonus)

With all the work you have done, you pretty much have a minimal ps(1). In fact, most of the times,
when we use ps(1), we are looking for the output of the command ps -e -o pid,command, which
we implemented in level 6.

From now on, you can add features to your program! Each -o column or additional flag implemented
is a way to learn new things on the Linux kernel!

11

