
UNIX 101

or ”How to feel like a true hack3r”

Subject - shell scripting

Saturday 4th December, 2021

Subject - shell scripting

Contents

1 Foreword 3
1.1 Notions seen in the tutorials . 3
1.2 Objectives . 3

2 Setup 3

3 Instructions 3

4 Evaluation 4
4.1 Instructions . 4
4.2 A word on cheating . 5

5 Exercises 5
5.1 ls on steroids.sh . 5

5.1.1 Goal . 5
5.1.2 Example . 6
5.1.3 Solution . 6

5.2 ls ordered.sh . 7
5.2.1 Goal . 7
5.2.2 Example . 7

5.3 ls ordered with arguments.sh . 8
5.3.1 Goal . 8
5.3.2 New notions: arguments retrieval . 8
5.3.3 New notions: exit . 9
5.3.4 Example . 9

5.4 salutation.sh . 10
5.4.1 Goal . 10
5.4.2 New notions: conditions . 10
5.4.3 Example . 11

5.5 salutation advanced.sh . 12
5.5.1 Goal . 12
5.5.2 Example . 12

5.6 my ansible.sh . 13
5.6.1 Goal . 13
5.6.2 Example . 13

5.7 my ansible advanced.sh . 14
5.7.1 Goal . 14
5.7.2 Example . 14

5.8 guessing game.sh . 16

1

Subject - shell scripting

5.8.1 Goal . 16
5.8.2 Example . 17

2

Subject - shell scripting

1 Foreword

1.1 Notions seen in the tutorials

Welcome to this subject! If you have finished the first tutorial and the one on git (and I hope you
do, if you have not yet, please finish them now), you should know:

– What the syntax of a command is
– A few useful commands
– How to navigate in a filesystem
– How to create, edit and remove files
– What is a packet manager and how to use one
– How to create executable scripts
– The basics of git

This is just enough to begin working on scripts and handing them for review.

1.2 Objectives

The goal of this subject is to make you use the notions seen in the tutorial through coding exercises.
Additionally, we will have a look over some aspects of the shell command language. That will allow
you to write more advanced scripts.

There are new notions you are going to learn and a handful of exercises. Start working early!

2 Setup

Before beginning, make sure you:

– finished tutorial-1 and thus know how to write scripts
– finished tutorial-git and thus know how to regularily make commits and push your work
– have a Github account

Before starting anything, create a git repository named shell-scripting.

3 Instructions

You have to create one directory per exercise.

For each exercise, you have to write a script and provide a README file. The script should solve the
exercise. The README file should be a text file that describes how you solved the exercise and the
problems you encountered. In the scenario where you cannot have a good enough script, leave a
README file with the solutions you tried to implement. Who knows, you might save some points :)

3

Subject - shell scripting

Also, you can provide a tests directory. It is a good practice to write automatic tests for your code.
As we did not study that on tutorials, no point will be taken off if there are no tests. However, points
can be granted if you provide good tests along with your scripts.

As it is a good practice to perform git commits regularily, you are asked to do it often. If you do
not commit your changes between each level, you will loose points on your final grade.
Also, remember that you can push your commits to your github repository at any time.

4 Evaluation

4.1 Instructions

You are asked to constituate a team of 2 persons. You will be graded as a team on:

– An oral presentation of your work (no need to prepare slides, we will discuss around your code)
– General UNIX knowledge questions

You have to push your work to your git repository before Wednesday 15th December, 2021, 7:00 AM.

The architecture of your repository should follow the following format:

$pwd
/home/nicolas/shell -scripting

$tree --charset=ascii

.

|-- exercise -1

| |-- ls_on_steroids.sh

| |-- README

| ‘-- tests

|-- exercise -2

| |-- ls_ordered.sh

| |-- README

| ‘-- tests

|-- exercise -3

| |-- ls_ordered_with_arguments.sh

| |-- README

| ‘-- tests

|-- exercise -4

| |-- README

| |-- salutation.sh

| ‘-- tests

|-- exercise -5

4

Subject - shell scripting

| |-- README

| |-- salutation_advanced.sh

| ‘-- tests

|-- exercise -6

| |-- my_ansible.sh

| |-- README

| ‘-- tests

|-- exercise -7

| |-- my_ansible_advanced.sh

| |-- README

| ‘-- tests

|-- exercise -8

| |-- guessing_game.sh

| |-- README

| ‘-- tests

‘-- README.md

4.2 A word on cheating

You have to remember that you should be studying for your own good. Cheating will not bring you
any good in the long term; it is fine not to be able to finish every exercise of the subject, your main
goal is to train and learn things.

Any form of cheating will immediately bring your grade down to 0. Additionally, your main teacher
will be taken notice of that.

A particular attention will be given to your README files.

Note: Changing the name of some variables will of course not trick the anti-cheat engine :)

5 Exercises

5.1 ls on steroids.sh

5.1.1 Goal

Script name: ls on steroids.sh

Write a script that recursively lists the content of the current directory. It should display everything
in long-listing format, show hidden files and directories and display the size of files and directoroes
in a human readable format.

5

Subject - shell scripting

5.1.2 Example

$ls
ls_on_steroids.sh*

$head -c 100 /dev/urandom > file.txt

$touch empty_file.txt

$mkdir dir_a

$mkdir dir_b

$head -c 10000 /dev/urandom > dir_b/random_file.txt

$./ ls_on_steroids.sh
.:

total 52K

drwxrwxr -x 4 nicolas nicolas 4,0K déc. 12 01:20 .

drwxrwxrwt 27 root root 28K déc. 12 01:20 ..

drwxrwxr -x 2 nicolas nicolas 4,0K déc. 12 01:20 dir_a

drwxrwxr -x 2 nicolas nicolas 4,0K déc. 12 01:21 dir_b

-rw -rw-r-- 1 nicolas nicolas 0 déc. 12 01:20 empty_file.txt

-rw -rw-r-- 1 nicolas nicolas 100 déc. 12 01:20 file.txt

-rwxrwxr -x 1 nicolas nicolas 23 déc. 12 01:19 ls_on_steroids.sh

./dir_a:

total 8,0K

drwxrwxr -x 2 nicolas nicolas 4,0K déc. 12 01:20 .

drwxrwxr -x 4 nicolas nicolas 4,0K déc. 12 01:20 ..

./dir_b:

total 20K

drwxrwxr -x 2 nicolas nicolas 4,0K déc. 12 01:21 .

drwxrwxr -x 4 nicolas nicolas 4,0K déc. 12 01:20 ..

-rw -rw-r-- 1 nicolas nicolas 9,8K déc. 12 01:21 random_file.txt

5.1.3 Solution

Now this part will not be there for other exercises but this is a guide on how to solve this exercise.

The script should be located in exercise-1/ls on steroids.sh. The README should be in the same
directory.

$pwd
/home/nicolas/shell -scripting/exercise -1

6

Subject - shell scripting

$ls
ls_on_steroids.sh* README tests/

$cat ls_on_steroids.sh

#! /bin/bash

ls -Rahl

$cat README

No real difficulty. I checked ls’s manual and found there all of the

options that I needed to use.

-R is the recursive option

-l is the long -listing format

-h is for human readable file sizes

-a is to display hidden files

5.2 ls ordered.sh

5.2.1 Goal

Script name: ls ordered.sh

Write a script that lists the files and directories in the current directory. It should display everything
in long-listing format, biggest files and directories first.

5.2.2 Example

$ls
ls_ordered.sh*

$touch empty

$head -c 100 /dev/urandom > small_file

$mkdir mydir

$head -c 10000 /dev/urandom > medium_file

$head -c 1000000 /dev/urandom > big_file

$./ ls_ordered.sh
total 1004

-rw -rw-r-- 1 nicolas nicolas 1000000 déc. 12 01:48 big_file

-rw -rw-r-- 1 nicolas nicolas 10000 déc. 12 01:48 medium_file

drwxrwxr -x 2 nicolas nicolas 4096 déc. 12 01:47 mydir

-rw -rw-r-- 1 nicolas nicolas 100 déc. 12 01:47 small_file

-rwxrwxr -x 1 nicolas nicolas 21 déc. 12 01:36 ls_ordered.sh

7

Subject - shell scripting

-rw -rw-r-- 1 nicolas nicolas 0 déc. 12 01:46 empty

5.3 ls ordered with arguments.sh

5.3.1 Goal

Script name: ls ordered with arguments.sh

New commands: echo, exit
New notions: Shell variables, arguments retrieval

Write a script that does the same thing as in the previous section. However, when invoked with an
argument, it should try to perform the listing on the argument path.

If there is more than one argument, it should only consider the first one.

If the argument is the path to a file, it should display the long-listing of that file.

If the argument is the path to a directory that does not exist, it should print an error message and
return an exit code 2

5.3.2 New notions: arguments retrieval

To complete this exercise, you need to know a few more things.

UNIX programs are launched through the command line. As we have seen with the many commands
we learnt in the tutorials, one can pass command line arguments to change their behavior.

So how does a program retrieve the user’s arguments? Well it is system-dependant but usually,
programs can access them using the argv variable. In Shell, variables are accessed with $ and
arguments are the variables 0, 1, 2, 3, etc. The variable 0 is always set: it is the name of the program
which runs. The other variables are only set if the program is launched with arguments. These
arguments are called positional parameters.

Let us check out an example:

$cat dummy_script.sh

#! /bin/bash

echo The name of the program is $0
echo The first argument is $1
echo The second argument is $2
echo The third argument is $3
echo The fourth argument is $4

8

Subject - shell scripting

$./ dummy_script.sh uno dos tres

The name of the program is ./ dummy_script.sh

The first argument is uno

The second argument is dos

The third argument is tres

The fourth argument is

5.3.3 New notions: exit

The command exit allows one to exit the current program and set a custom return code. Entering
exit in an interactive shell closes the shell. Using it in a script shut downs the script. Shell scripts
use that command to set their return code.

As we have seen just before, in a shell, variables can be accessed with $. Numeric variables are not
the only special variables. As such, $? gives the return code of the latest command executed and $#
gives the number of positional parameters.

Let us see an example:

$cat exit_script.sh

#! /bin/bash

echo Hi! Let us imagine something goes wrong and exit with a return

code of 5

exit 5

$./ exit_script.sh
Hi! Let us imagine something goes wrong and exit with a return code

of 5

$echo $?
5 # Return code of ./ exit_script.sh is 5

$pwd
/home/nicolas

$ echo $?
0 # Return code of pwd is 0

5.3.4 Example

$./ ls_ordered_with_arguments.sh
total 1004

9

Subject - shell scripting

-rw -rw-r-- 1 nicolas nicolas 1000000 déc. 12 01:48 big_file

-rw -rw-r-- 1 nicolas nicolas 10000 déc. 12 01:48 empty_file

drwxrwxr -x 2 nicolas nicolas 4096 déc. 12 02:41 mydir

-rw -rw-r-- 1 nicolas nicolas 100 déc. 12 01:47 small_file

-rwxrwxr -x 1 nicolas nicolas 24 déc. 12 02:41

ls_ordered_with_arguments.sh

-rw -rw-r-- 1 nicolas nicolas 0 déc. 12 01:46 empty

$./ ls_ordered_with_arguments.sh mydir

total 4

-rw -rw-r-- 1 nicolas nicolas 5 déc. 12 02:41 file_with_text

-rw -rw-r-- 1 nicolas nicolas 0 déc. 12 02:41 hello

5.4 salutation.sh

5.4.1 Goal

Script name: salutation.sh

New notions: Conditions

Write a script that, given two arguments, prints Hello , followed by the first argument, a whitespace,
the second argument and , have a nice day!.

If there is no error, the return code should be 0. If there is an error, the return code should be 1 and
the following line should be displayed: Usage: ./salutation.sh firstname lastname.

The error cases are:

– If no argument is supplied
– If only one argument is supplied
– If more than two arguments are supplied

5.4.2 New notions: conditions

Every programming language relies on conditional statements. The shell command language being
a script language, it also has control structures as conditions and loops.

For this exercise, we will learn to use the simple test condition and the if control structure.

Consider the following pseudo-code

if CONDITION; then

DO SOMETHING

else

10

Subject - shell scripting

DO SOMETHING ELSE

fi

Here, if CONDITION is evaluated to 0 (True), the flow of execution will continue at DO SOMETHING

and then ”jump to” what is after fi. If the condition is evaluated to something else (False), the flow
of execution will continue at DO SOMETHING ELSE and then ”jump to” what is after fi1. Note that
the else statement is optional.

CONDITION can be any shell command since every shell command has an exit code. However, we can
use the builtin test which allows one to test simple conditions.

Let us see an example:

$cat simple_test.sh

#! /bin/bash

if test 10 -eq 100; then

echo 10 is equal to 100? Wut?

else

echo 10 is indeed not equal to 100, seems legit

fi

$./ simple_test.sh
10 is indeed not equal to 100, seems legit

Here is a summary of the most common test options:

int1 -eq int2 Test that numbers int1 and int2 are the same
int1 -lt int2 Test that number int1 is lower than int2
int1 -ge int2 Test that number int1 is greater orequal to int2

-e file Test that file file exists
-d file Test that file file is a directory
-z str Test that string str is empty or nonexistent

str1 = str2 Test that string str1 is the same as str2

str1 != str2 Test that string str1 is not the same as str2

Table 1: Most common test options

5.4.3 Example

1This is a if condition that is very common in programming

11

Subject - shell scripting

$./ salutation.sh John Doe

Hello John Doe , have a nice day!

$echo $?
0

$./ salutation.sh
Usage: ./ salutation.sh firstname lastname

$echo $?
1

$./ salutation.sh John Kevin Doe

Usage: ./ salutation.sh firstname lastname

$echo $?
1

5.5 salutation advanced.sh

5.5.1 Goal

Script name: salutation advanced.sh

Write a script that behaves the same as the previous one. It however has a new error case: if the
given firstname and lastname are the same, simply display Firstname and lastname cannot be

the same! and exit with an error code 2.

5.5.2 Example

$./ salutation_advanced.sh John Doe

Hello John Doe , have a nice day!

$echo $?
0

$./ salutation_advanced.sh
Usage: ./ salutation_advanced.sh firstname lastname

$echo $?
1

$./ salutation_advanced.sh John Kevin Doe

Usage: ./ salutation_advanced.sh firstname lastname

$echo $?
1

./ salutation_advanced.sh John John

Firstname and lastname cannot be the same!

$echo $?

12

Subject - shell scripting

2

5.6 my ansible.sh

5.6.1 Goal

Script name: my ansible.sh

Write a script that creates the following files and directory architecture2:

.

|-- documents

| |-- gamez

| | ‘-- csgo.exe

| |-- images

| ‘-- work

| |-- code

| ‘-- plannings

| |-- april.xlsx

| |-- february.xlsx

| |-- january.xlsx

| ‘-- march.xlsx

|-- meeting_notes.txt

If some files already exist, neither their content nor their last modification date should be modified.

Except if permission issues arise, the script should not print anything and always have a 0 exit code.

Bonus: Write the smallest script possible. The smallest one will be given extra points.

Note: Do not commit the files you generate. They should not be relevant.

5.6.2 Example

$ls
my_ansible.sh*

$./ my_ansible.sh
$echo $?
0

$ls -R

2images is an empty directory

13

Subject - shell scripting

.:

documents/ meeting_notes.txt my_ansible.sh*

./ documents:

gamez/ images/ work/

./ documents/gamez:

csgo.exe

./ documents/images:

./ documents/work:

code/ plannings/

./ documents/work/code:

./ documents/work/plannings:

april.xlsx february.xlsx january.xlsx march.xlsx

5.7 my ansible advanced.sh

5.7.1 Goal

Script name: my ansible advanced.sh

Write a script similar to the one from the previous exercise. The behavior of the script should however
be dependant on positional parameters:

– If no positional parameter is given, keep the behavior the same as for my ansible.sh
– If a positional parameter is given, use it to create an intermediary directory in documents

– If more than one positional parameter is given, display Usage: ./my ansible advanced.sh

[username] and exit with a code 1
– If a positional parameter is given but the directory documents does not exist, display directory

documents must exist and exit with a code 2

Bonus: Prevent side-effects from malicious usages of that script (e.g. prevent what happens if the
user inputs ”..” as the positional argument)

5.7.2 Example

$ls

14

Subject - shell scripting

my_ansible_advanced.sh*

$./ my_ansible_advanced.sh john

directory documents must exist

$echo $?
2

$ls
my_ansible_advanced.sh*

$./ my_ansible_advanced.sh
$tree --charset=ascii

.

|-- documents

| |-- gamez

| | ‘-- csgo.exe

| |-- images

| ‘-- work

| |-- code

| ‘-- plannings

| |-- april.xlsx

| |-- february.xlsx

| |-- january.xlsx

| ‘-- march.xlsx

|-- meeting_notes.txt

‘-- my_ansible_advanced.sh

6 directories , 7 files

$./ my_ansible_advanced.sh nicolas

$tree --charset=ascii

.

|-- documents

| |-- gamez

| | ‘-- csgo.exe

| |-- images

| |-- nicolas

| | |-- gamez

| | | ‘-- csgo.exe

| | |-- images

| | ‘-- work

| | |-- code

| | ‘-- plannings

| | |-- april.xlsx

15

Subject - shell scripting

| | |-- february.xlsx

| | |-- january.xlsx

| | ‘-- march.xlsx

| ‘-- work

| |-- code

| ‘-- plannings

| |-- april.xlsx

| |-- february.xlsx

| |-- january.xlsx

| ‘-- march.xlsx

|-- meeting_notes.txt

‘-- my_ansible_advanced.sh

12 directories , 12 files

$./ my_ansible_advanced.sh nicolas doe

Usage: ./ my_ansible_advanced.sh [username]

$echo $?
1

5.8 guessing game.sh

5.8.1 Goal

Script name: guessing game.sh

Write a script that behaves the same way as the guessing game from tutorial-1.

You are given the following chunk of code to help you. Feel free to copy/paste it to begin your script:

#! /bin/bash

echo At any time , hit CTRL+C to exit the script

number_to_guess=$(($RANDOM % 100))

while ((guess != number_to_guess)); do

read -p "" guess # Asks the user for a number and put it in

the variable "guess"

echo Number given by user: $guess

done

16

Subject - shell scripting

Bonus: handle badly formatted user input (e.g. do not crash if the user inputs something that is
not a number)

5.8.2 Example

./ guessing_game.sh

I have in mind a number in between 1 and 100, can you find it?

10

The number to guess is higher

70

The number to guess is lower

45

The number to guess is lower

34

The number to guess is lower

23

The number to guess is higher

29

The number to guess is lower

26

You just found the number , it was indeed 26

17

	Foreword
	Notions seen in the tutorials
	Objectives

	Setup
	Instructions
	Evaluation
	Instructions
	A word on cheating

	Exercises
	ls_on_steroids.sh
	Goal
	Example
	Solution

	ls_ordered.sh
	Goal
	Example

	ls_ordered_with_arguments.sh
	Goal
	New notions: arguments retrieval
	New notions: exit
	Example

	salutation.sh
	Goal
	New notions: conditions
	Example

	salutation_advanced.sh
	Goal
	Example

	my_ansible.sh
	Goal
	Example

	my_ansible_advanced.sh
	Goal
	Example

	guessing_game.sh
	Goal
	Example

