
UNIX 101

or ”How to feel like a true hack3r”

Tutorial git

November 24, 2021

Tutorial git

Contents

1 Foreword 2
1.1 Objective . 2
1.2 Preliminary setup . 2

2 Git 2
2.1 The why: problems, problems, problems . 2
2.2 The what: Version Control System . 3
2.3 The why you should really really learn using git . 3

3 Theory 4
3.1 Basics & vocabulary . 4
3.2 State of files . 4
3.3 Commits . 4
3.4 Basic commands . 5

3.4.1 Initialize a git repository . 5
3.4.2 Inspect a git repository . 7
3.4.3 Create commits . 9

3.5 Workflow . 11
3.5.1 Example . 11
3.5.2 Summing it all in a schema . 13
3.5.3 One last thing . 13

4 Practical exercises 14
4.1 Getting access . 14

4.1.1 Create an account . 14
4.1.2 Setup SSH . 15

4.2 Try out commands! . 16
4.2.1 Create a new repository . 16
4.2.2 Exercise . 17

1

Tutorial git

1 Foreword

1.1 Objective

This tutorial should teach you the basics of working with git. It will demonstrate what one can
perform with this tool, how it works and how to use it.

If you work thoroughfully, at the end of this tutorial, you should know:

– What is git
– Why it is important to know how to use git
– How to generate a SSH key and how to use SSH to communicate with a git server
– How to clone a remote repository
– How to contribute to a repository

1.2 Preliminary setup

You are going to need a UNIX-like operating system for this tutorial. A Linux distribution is preferred
but a Mac can also do the job (OS X is a variant of FreeBSD).

You need the git binary to be installed on your system. If you have finished the first tutorial, you
should know how to install it1.

Lastly, you need to configure git:

$g i t c on f i g −−g l oba l user . name ”Firstname Lastname” # Put your own name here
and do not f o r g e t the quotes !

$g i t c on f i g −−g l oba l user . emai l f i r s tname . lastname@mail . com # Put your own
name and emai l here

The configuration will be saved in your home, in the hidden file .gitconfig. This is where git will
look for user configuration, by default. Use cd and cat .gitconfig to see the file content. Confirm
that the informations you entered earlier are correct.

2 Git

2.1 The why: problems, problems, problems

Because a coding project contains a lot of files of different type (code files, generated files, libraries,
documentation, etc), working alone or collaborating on one proves itself to be complicated without

1Check that it is installed with which git; if it is not, install it with sudo apt install git. If you had trouble
with that, take some time to read again the previous tutorial

2

Tutorial git

some kind of versioning or collaboration tool.

Imagine having to share your work with colleagues throught USB keys or some cloud drive drag&drop
operations. Then imagine working all at the same time on the same project. How to handle conflicts?
Regressions? What if you submit some work but your colleague was about to do the same and you
modified the same files? What if you somehow loose your work? How do you restore it?

These problems are bound to happen with a team of one or two persons and it is already a pain.
Now imagine the same problems for a team of ten (or more) persons working on the same project.
That is a lot of pain.

2.2 The what: Version Control System

Hopefully, smart people have worked on that problem for us, years ago. Version Control Systems
(VCS) help solve some of these issues. Technically, there exist multiple VCS but git has become the
de facto choice in the last ten years. Git is basically a tool that allows one to keep an history of files.
It has the particularity to be distributed: multiple persons can keep a common history of files.

Thanks to git, you will be able to:

– Backup easily and whenever you want your work
– Prevent accidents (e.g. unwanted file or content deletion)
– Browse the history of your modifications and come back to some point in time if necessary
– Work collaboratively on a project
– ...and much more!

2.3 The why you should really really learn using git

Just to highlight the popularity of these kind of tools, one needs to understand that every single
serious software company in the world uses a VCS and most of them rely on git. All pro-
fessional software engineers are expected to know how to use this tool. Not only software engineers
but also any professional worker in information systems use it: code is everywhere and versioning
it is mandatory for systems to keep working continuously. Even infrastructure configurations are
versioned now.

Lastly, platforms like Github and Gitlab are rapidly raising in popularity. They provide developer/-
management tools on top of git: project management, automatic deployments, ticketing, etc. For
most engineering teams, this is the service they use the most. For this tutorial, we are going to use
Github.

3

https://git-scm.com/

Tutorial git

3 Theory

This tutorial is only going to cover the very basics of git. It has dozens of hidden features and it
takes years to completely master that tool.

3.1 Basics & vocabulary

The main goal of git is to allow one to versionate files. That is done by keeping track of their history.
The history of a file at some point in time could be pictured as the incremental changes made to it.

Let’s take an example: a journalist writing a blog article on a word processor software (say Microsoft
Word or Google Docs). First, he will start by writing the summary of the article in a document.
That is ”version 1” of the file. Then, he will write down ideas, insights or some sentences. That is
”version 2”. Then, complete paragraphs. That makes it ”version 3”. Then, ”version 4” is the same
thing with images and formatted text. Every logical change creates a new version of the document.
The software keeps track of all of the versions; that is its history.

Git allows one to do exactly that for code directories. It keeps track of the history of multiple files
at the same time (at a directory level), collaboratively. The changes from one version to another
are contained in what is called a commit. The project in which the files tracked by git are located
is called a repository. The history of commits is called an... history. Lastly, although we are not
going to cover them in this tutorial, parallel, alternative versions of a repository are called branches.

3.2 State of files

Git does not perform anything automatically. The user has to explicitely tell it what files should be
tracked and how the history is going to be built. One interacts with git through the command line2.

– Files that are not known by git are untracked
– Files that are known by git but have not been modified are unmodified
– Files that are known by git but have been modified are modified (or unstaged)
– Files that are known by git, have been modified and ready to be commited are staged

3.3 Commits

In practice, to create an history for a project, the user simply changes the state of the files as he
creates content. He records changes to the repository through commits. It is the basic unit of
change: a simple git repository is nothing more than a big, ordered, list of commits.

In modern software, generally, a commit is supposed to contain a single logical change to an applica-
tion. That is, for example, if I have two bugs to fix, I should create two commits. This is useful for

2There exists graphical user interfaces too but knowing the command line interface is needed for most work
environments

4

Tutorial git

many reasons. Here are some from the non-exhaustive list of why it is good to have small, unitary
commits:

– At any moment, it makes it easy to look back in time and see when a feature has been imple-
mented by checking the commit date associated with the feature

– If a chunk of code introduces a bug in the application, one can revert a commit in no time. This
undoes the changes introduced by the commit; then, the application is healthy again while a
bugfix can be safely developed

3.4 Basic commands

Let us discover git’s main commands.

3.4.1 Initialize a git repository

There are two ways to get started:

– git init: initialize an empty git repository in the working directory
– git clone remote path: download a git repository from a remote place

git init will get you started from scratch:

$cd /tmp
$mkdir mysuperproject
$cd mysuperproject
$g i t s t a tu s
f a t a l : not a g i t r e po s i t o r y (or any o f the parent d i r e c t o r i e s) : . g i t
$g i t i n i t
I n i t i a l i z e d empty Git r e po s i t o r y in /tmp/mysuperproject / . g i t /
$g i t s t a tu s
On branch master

No commits yet

nothing to commit (c r e a t e /copy f i l e s and use ” g i t add” to t rack)
$ l s −a
. . . . g i t

You may have noticed the directory .git: it indicates that the current directory is not a simple
directory but also a git repository.

git clone will get you started from an existing, remote (i.e. from the network) git repository:

5

Tutorial git

$
$cd /tmp
$g i t c l one https : // github . com/vim/vim . g i t
Cloning in to ’ vim ’ . . .
remote : Enumerating ob j e c t s : 138128 , done .
remote : Counting ob j e c t s : 100\% (5/5) , done .
remote : Compressing ob j e c t s : 100\% (5/5) , done .
remote : Total 138128 (de l t a 0) , reused 1 (de l t a 0) , pack−reused 138123
Rece iv ing ob j e c t s : 100\% (138128/138128) , 121 .92 MiB | 17 .30 MiB/s , done .
Reso lv ing d e l t a s : 100\% (117102/117102) , done .
$cd vim
$ l s − l −a
t o t a l 304
drwxr−xr−x 31 n i c o l a s wheel 992 Nov 21 13 :14 .
drwxrwxrwt 11 root wheel 352 Nov 21 18 :22 . .
−rw−r−−r−− 1 n i c o l a s wheel 733 Nov 21 12 :32 . appveyor . yml
−rw−r−−r−− 1 n i c o l a s wheel 518 Nov 21 12 :32 . c i r r u s . yml
−rw−r−−r−− 1 n i c o l a s wheel 93 Nov 21 12 :32 . codecov . yml
−rw−r−−r−− 1 n i c o l a s wheel 29 Nov 21 12 :32 . c o v e r a l l s . yml
drwxr−xr−x 12 n i c o l a s wheel 384 Nov 21 13 :14 . g i t
−rw−r−−r−− 1 n i c o l a s wheel 27 Nov 21 12 :32 . g i t a t t r i b u t e s
drwxr−xr−x 6 n i c o l a s wheel 192 Nov 21 12 :32 . g ithub
−rw−r−−r−− 1 n i c o l a s wheel 1553 Nov 21 12 :32 . g i t i g n o r e
−rw−r−−r−− 1 n i c o l a s wheel 1504 Nov 21 12 :32 . hg ignore
−rw−r−−r−− 1 n i c o l a s wheel 140 Nov 21 12 :32 . lgtm . yml
−rw−r−−r−− 1 n i c o l a s wheel 9159 Nov 21 12 :32 . t r a v i s . yml
−rw−r−−r−− 1 n i c o l a s wheel 3575 Nov 21 12 :32 CONTRIBUTING.md
−rw−r−−r−− 1 n i c o l a s wheel 25765 Nov 21 12 :32 F i l e l i s t
−rw−r−−r−− 1 n i c o l a s wheel 5002 Nov 21 12 :32 LICENSE
−rw−r−−r−− 1 n i c o l a s wheel 21108 Nov 21 12 :32 Make f i l e
−rw−r−−r−− 1 n i c o l a s wheel 7129 Nov 21 13 :14 README.md
−rw−r−−r−− 1 n i c o l a s wheel 4900 Nov 21 12 :32 README. txt
−rw−r−−r−− 1 n i c o l a s wheel 10888 Nov 21 12 :32 READMEVIM9.md
drwxr−xr−x 29 n i c o l a s wheel 928 Nov 21 12 :32 READMEdir
drwxr−xr−x 12 n i c o l a s wheel 384 Nov 21 12 :32 c i
−rwxr−xr−x 1 n i c o l a s wheel 182 Nov 21 12 :32 con f i gu r e
drwxr−xr−x 7 n i c o l a s wheel 224 Nov 21 12 :32 n s i s
drwxr−xr−x 55 n i c o l a s wheel 1760 Nov 21 12 :32 pixmaps
drwxr−xr−x 63 n i c o l a s wheel 2016 Nov 21 12 :32 runtime
drwxr−xr−x 295 n i c o l a s wheel 9440 Nov 21 12 :32 s r c
drwxr−xr−x 3 n i c o l a s wheel 96 Nov 21 12 :32 t o o l s
−rw−r−−r−− 1 n i c o l a s wheel 3851 Nov 21 12 :32 u n i n s t a l l . tx t
−rw−r−−r−− 1 n i c o l a s wheel 1709 Nov 21 12 :32 vimtutor . bat

6

Tutorial git

−rwxr−xr−x 1 n i c o l a s wheel 2901 Nov 21 12 :32 vimtutor . com

Here, we just retrieved the whole source code of the famous program vim. We can see that the
directory .git is also there: it is indeed a git repository.

3.4.2 Inspect a git repository

– git log: show the repository history
– git status: show the working tree3 status
– git diff: show changes between current state of files and last registered commit

Let’s demonstrate the use of these commands:

$cd /tmp/vim # You should have c loned the r epo s i t o r y in the l a s t s e c t i o n . I f
not , do i t !

$g i t l og
commit 2 c23670300b18f2 f799d0602f f5225caa55b0d67 (HEAD −> master , tag : v8

. 2 . 3 6 36 , o r i g i n /master , o r i g i n /HEAD)
Author : Bram Moolenaar <Bram@vim . org>
Date : Sun Nov 21 11 : 15 : 49 2021 +0000

patch 8 . 2 . 3 6 3 6 : Cover i ty warns f o r unreachable code

Problem : Cover i ty warns f o r unreachable code .
So lu t i on : Remove unreachable e l s e b lock .

commit 3 c19b5050040fb74e4e39048f17dce853fdafc08 (tag : v8 . 2 . 3 6 3 5)
Author : Dusan Popovic <dpx@binaryapparatus . com>
Date : Sat Nov 20 22 : 03 : 30 2021 +0000

patch 8 . 2 . 3 6 3 5 : GTK: composing unde r l i n e does not show

Problem : GTK: composing unde r l i n e does not show .
So lu t i on : Inc lude composing charac t e r in pango c a l l . A few more

opt im i za t i on s f o r l i g a t u r e s . (Dusan Popovic , c l o s e s #9171 ,
c l o s e s #9147)

(. . .)
: # This i s a pager , l i k e the man . Fee l f r e e to nav igate up and down ; then

pr e s s q to qu i t
$g i t l og −−one l i n e | wc − l

3The tree is the repository. Considering that there can be multiple branches in the history, if a commit is a node,
we have a tree

7

Tutorial git

14692
$g i t l og | t a i l
Author : Bram Moolenaar <Bram@vim . org>
Date : Sun Jun 13 13 : 02 : 36 2004 +0000

updated f o r v e r s i on 7 .0001

commit 0 c628d1da896bf523373c4fc9616baee712a6e96
Author : Bram Moolenaar <Bram@vim . org>
Date : Sun Jun 13 12 : 29 : 53 2004 +0000

I n i t i a l r e v i s i o n

With the help of the commands git log, wc and tail, we have seen that there are close to 15000
commits and that the oldest one dates back 2004! These guys have been using git for this project
for close to 20 years!

$cd /tmp/vim # You should have c loned the r epo s i t o r y in the l a s t s e c t i o n . I f
not , do i t !

$g i t s t a tu s
On branch master
Your branch i s up to date with ’ o r i g i n /master ’ .

nothing to commit , working t r e e c l ean
$g i t d i f f # This should produce no output
Now, use a f i l e e d i t o r to ed i t any f i l e from the r epo s i t o ry , f o r example

README.md
$vim README.md
ed i t i n g . . .
$g i t s t a tu s
On branch master
Your branch i s up to date with ’ o r i g i n /master ’ .

Changes not staged f o r commit :
(use ” g i t add < f i l e > . . . ” to update what w i l l be committed)
(use ” g i t r e s t o r e < f i l e > . . . ” to d i s ca rd changes in working d i r e c t o r y)

modi f i ed : README.md
$g i t d i f f
d i f f −−g i t a/README.md b/README.md
index 5 c8403c3 f . . c f4784856 100644
−−− a/README.md
+++ b/README.md

8

Tutorial git

@@ −23,6 +23 ,8 @@ f i n g e r s ” w i l l f e e l at home .
See [‘ runtime/doc/ v i d i f f . txt ‘] (runtime/doc/ v i d i f f . tx t) f o r d i f f e r e n c e s with
Vi .

+Hey , I j u s t added text in the re !
+
This e d i t o r i s very u s e f u l f o r e d i t i n g programs and other p l a i n text f i l e s .
A l l commands are g iven with normal keyboard charac te r s , so those who can type
with ten f i n g e r s can work very f a s t . Add i t iona l ly , f unc t i on keys can be

Here, at first, we inspected the situation with git status and git diff. This reported no change.
After that, we edited a file and git status and git diff reported the change.

Keep these three commands in mind, in particular git status: in case of doubt, they should provide
you enough context to know what is going on in the repository you are in.

3.4.3 Create commits

The following commands can change the state of files in a git repository:

– git add filename...: stage the file named filename if it is untracked. Only stage what
changed since the previous version of that file if it is already tracked

– git commit [-m commit message]: take what has been staged an build a commit with it
(with an optional commit message)

– git restore --staged filename: unstage changes from the file named filename
– git checkout filename: unstage changes from the file name filename (just like the previous

command)
– git checkout commitid: switch to the state of the repository like it was when the commit

commitid was made
– git checkout branchname: switch to the state of the repository like it is on the branch

branchname

We will cover the basic ones. To create a commit, the fastest way is to follow three steps:

– Edit one or multiple files with a text editor
– Stage edits with git add

– Create the commit with git commit

At any time, you can use the commands from last section to see what is going on.

$cd /tmp
$mkdir t e s t r e p o s i t o r y
$cd t e s t r e p o s i t o r y

9

Tutorial git

$g i t i n i t
I n i t i a l i z e d empty Git r e po s i t o r y in /tmp/ t e s t r e p o s i t o r y / . g i t /
$vim README # crea t e f i l e README and add s t u f f in the re
$g i t s t a tu s
On branch master

No commits yet

Untracked f i l e s :
(use ” g i t add < f i l e > . . . ” to in c lude in what w i l l be committed)

README

nothing added to commit but untracked f i l e s pre sent (use ” g i t add” to t rack)
$g i t add README
$g i t s t a tu s
On branch master

No commits yet

Changes to be committed :
(use ” g i t rm −−cached < f i l e > . . . ” to unstage)

new f i l e : README

$g i t commit −m ”This i s my f i r s t commit”
[master (root−commit) a99c481] This i s my f i r s t commit
1 f i l e changed , 1 i n s e r t i o n (+)
c r e a t e mode 100644 README

$g i t s t a tu s
On branch master
nothing to commit , working t r e e c l ean
$g i t l og
commit a99c481d7eea19e0b4bacd9b5f0712ee22e26243 (HEAD −> master)
Author : n i coche <nicolas@koyeb . com>
Date : Sun Nov 21 13 : 56 : 11 2021 +0100

This i s my f i r s t commit

10

Tutorial git

3.5 Workflow

3.5.1 Example

The following snippets show an example of a simple git workflow. Read them carefully, then execute
them on your workstation.

$mkdir my project # Creat ing a new d i r e c t o r y
$cd my project / # Hopping i n s i d e . . .
$g i t i n i t # I n i t i a l i z i n g a g i t r e p o s i t o r y in here
I n i t i a l i z e d empty Git r e po s i t o r y in /tmp/my project / . g i t / # I t worked !
$touch my code f i l e . py # Creat ing an empty f i l e
$g i t s t a tu s # Showing the cur rent s t a t e o f the t r e e
On branch master # Do not bother understanding branches r i g h t now

No commits yet # Makes sense , t h i s i s a new r epo s i t o r y and we did not commit
anything yet

Untracked f i l e s :
(use ” g i t add < f i l e > . . . ” to in c lude in what w i l l be committed)

my code f i l e . py # This f i l e i s not known by g i t : i t i s untracked

nothing added to commit but untracked f i l e s pre sent (use ” g i t add” to t rack)
$g i t add my code f i l e . py # Staging t h i s f i l e (= prepar ing to put i t in a

fu tu r e commit)
$g i t s t a tu s # Showing the cur rent s t a t e o f the t r e e
On branch master

No commits yet

Changes to be committed :
(use ” g i t rm −−cached < f i l e > . . . ” to unstage)

new f i l e : my code f i l e . py # Our f i l e has c o r r e c t l y been staged ! Our
commit i s now ready to be made :)

$g i t commit −m ”Add code f i l e with nothing i n s i d e ” # Let ’ s make a commit with
our l i t t l e f i l e now

[master (root−commit) 33 df133] Add code f i l e with nothing i n s i d e # Done :)
1 f i l e changed , 0 i n s e r t i o n s (+) , 0 d e l e t i o n s (−)
c r e a t e mode 100644 my code f i l e . py

$g i t s t a tu s # Showing the cur rent s t a t e o f the t r e e
On branch master

11

Tutorial git

nothing to commit , working t r e e c l ean # Indeed , we commited every change we
made . No f i l e has been modi f i ed s i n c e the l a s t commit so everyth ing i s up−
to−date .

$g i t l og −−one l i n e # Let us check the h i s t o r y
33 df133 (HEAD −> master) Add code f i l e with nothing i n s i d e # Our commit i s

j u s t the re . I f we cont inue adding or modifying f i l e s and comit t ing them , we
w i l l have an h i s t o r y o f a l l o f our commits :)

We just initialized a git repository and made a commit with an empty file. Now let us say we modified
the file and added some code inside. Let us see how to backup our work in a new commit.

$cat my code f i l e . py # Show content o f the f i l e
de f power 2 (x) :

r e turn x ∗ x
$g i t s t a tu s # Showing the cur rent s t a t e o f the t r e e
On branch master
Changes not staged f o r commit :

(use ” g i t add < f i l e > . . . ” to update what w i l l be committed)
(use ” g i t r e s t o r e < f i l e > . . . ” to d i s ca rd changes in working d i r e c t o r y)

modi f i ed : my code f i l e . py # That f i l e i s t racked by g i t but has been
modi f i ed . In the prev ious example , i t was not tracked by g i t at

a l l so i t s l a b e l was ”new f i l e ” , not ”modi f i ed ”

no changes added to commit (use ” g i t add” and/or ” g i t commit −a”)
$g i t d i f f # Let us see what has changed s i n c e l a s t commit
d i f f −−g i t a/my code f i l e . py b/my code f i l e . py
index e69de29 . . 5 dbce8e 100644
−−− a/my code f i l e . py
+++ b/my code f i l e . py
@@ −0,0 +1,2 @@
+def power 2 (x) : # The ”+” i nd i c a t e s that we added t h i s l i n e
+ return x ∗ x # Same here
$g i t add my code f i l e . py # Let ’ s s tage t h i s f i l e . . .
$g i t s t a tu s # Showing the cur rent s t a t e o f the t r e e
On branch master
Changes to be committed :

(use ” g i t r e s t o r e −−staged < f i l e > . . . ” to unstage)
modi f i ed : my code f i l e . py # We staged the mod i f i c a t i on s to

my code f i l e . py
$g i t commit −m ”Add power 2 func t i on ” # Now, commit !
[master 2d2aa86] Add power 2 func t i on
1 f i l e changed , 2 i n s e r t i o n s (+) # Git t e l l s us what changed in the commit we

12

Tutorial git

j u s t made
$g i t l og −−one l i n e # Let ’ s check out our h i s t o r y now . . .
2d2aa86 (HEAD −> master) Add power 2 func t i on # Lates t commit
0745a0b Add code f i l e with nothing i n s i d e # F i r s t commit

Good! We made a brand new commit. That is it for the basics. The workflow is: make some changes,
stage those changes, commit that and repeat.

Now let us see a real-life use case. Let us say that, by mistake, we removed our code file. Git will
help us restore it to the last state we saved it at.

$rm my code f i l e . py #oops , t h i s was a mistake !
$ l s # No output : the d i r e c t o r y i s empty . Our code f i l e has been de l e t ed !
$g i t s t a tu s # Showing the cur rent s t a t e o f the t r e e
On branch master
Changes not staged f o r commit :

(use ” g i t add/rm < f i l e > . . . ” to update what w i l l be committed)
(use ” g i t r e s t o r e < f i l e > . . . ” to d i s ca rd changes in working d i r e c t o r y)

de l e t ed : my code f i l e . py # Indeed , our code f i l e has been de l e t ed

no changes added to commit (use ” g i t add” and/or ” g i t commit −a”)
$g i t checkout my code f i l e . py # Revert changes (i . e . d e l e t i o n) made on

my code f i l e . py
Updated 1 path from the index
$ l s
my code f i l e . py # It ’ s back !

Those examples are fairly simple but they show you most of the basic commands a git user executes
daily. git checkout is especially useful to rollback the project to a working version, for example if
a bug has been introduced by mistake in the newer versions of the project.

Now, repeat those commands on your workstation.

3.5.2 Summing it all in a schema

The following image summarizes how to build commits.

3.5.3 One last thing

Remember when we said that git was a distributed tool that allowed people to collaborate on the
same project? We have not covered that part.

13

Tutorial git

Figure 1: Basic git workflow

Actually, commits can be synchronized with a server. We will not cover it in details at all; for now
you just need to now that if your git repository exists on a remote server you can push your tree
to make your commits available to other collaborators and pull the latest commits made by other
collaborators. The respective commands to perform these two actions are, surprisingly, git push

and git pull.

Think of it as a Google doc where you write stuff collaboratively: when you make changes, everybody
can see them and when other make changes, you can see them. When you write code as a member
of a team, you also want to share your code with your teammates and retrieve code changes from
your teammates; most teams do it with git.

4 Practical exercises

We are going to use the popular ”development platform” Github. This platform is the leader in the
industry and millions of developers use it. Most engineering teams use either GitHub or a similar
platform on a daily basis.

4.1 Getting access

4.1.1 Create an account

Create an account there and verificate it by confirming your email. Make sure you use the same
email you used to configure git.

14

https://github.com/

Tutorial git

4.1.2 Setup SSH

The preferred way to communicate with a git remote (understand a repository online) is through
SSH. SSH is a protocol providing a secure communication channel between two hosts. It relies on
symmetric and asymmetric cryptography.

We are not going to dig into the details of that protocol as it would be out of scope for that tutorial.
Instead, remember that we need to generate a private (secret) key and a public (not secret) key
and to communicate the public key to the git server. The following command will generate a 4096
bits RSA keypair:

$ssh−keygen −t r sa −b 4096
Generating pub l i c / p r i va t e r sa key pa i r .
Enter f i l e in which to save the key (/home/ n i c o l a s / . ssh / i d r s a) : # Do not put

anything here , i t i s the r i g h t p lace
Enter passphrase (empty f o r no passphrase) :
Enter same passphrase again :
Your i d e n t i f i c a t i o n has been saved in /home/ n i c o l a s / . ssh / i d r s a .
Your pub l i c key has been saved in /home/ n i c o l a s / . ssh / i d r s a . pub .
The key f i n g e r p r i n t i s :
SHA256 : pUuEbId+QRZgIE4Zu7fI/ZqViyISKJDV9nk4f9cLCh4 n i co l a s@n i co l a s−l aptop
The key ’ s randomart image i s :
+−−−[RSA 4096]−−−−+
| ++..o .+. |
| ooooo = |
| oo . .=o+ . |
| o . o=o.+ |
| o . . .+S . |
|+. + . +E . . o . |
| . . o o o . .+ o . . |
| o . = |
| . . .+. o |
+−−−−[SHA256]−−−−−+

Following that command, the keys are put in your home, in the hidden folder .ssh/. The public key
is the one with the .pub extension. As it is public, it can be shared with anyone without any risk.
The private one is the one without extension. You should not touch that file.

Now, display the content of that public key file (you can use cat /home/your name/.ssh/id rsa.pub

to get it). It should look like this:

$cat /home/ n i c o l a s / . ssh / i d r s a . pub
ssh−r sa AAAAB3NzaC1yc2EAAAADAQABAAACAQDG7B9ZYR5zUgCjSe2VIFHL6K36UCJDzmP4/

15

Tutorial git

dgkn6CGcl/40
IxYQi6Ynt7wqasuCrLLQMd02MJ6YkofnP9emC3eYWzZ0vrtfhBhQTU1H8Rn5PmQBtfLBBSSe3kwaVVNKSj2GlW6iJaCYzMHXgLJUZl
/3henTMKxQAknr5vdXyfAnIbEtQP3UMYpokJS8Y1GA45i55m87CzaMv/
jygKn79KXyC8t92G6UWpfxgc/
LbW7Myo0P1yeMeK8c2d3zkeCqQtiDoxHSQpDq4ULYErKrfeLHTXosKs/ fgpti7TG16P88r/
WIavqMCWrHEimHzw/qNRmHGD+VAQOw0Il/
CydykhZLGW4NgVr4gAoCejhqTHxOTeuGbJWNo3tPTEubbMiT1vDOKb5/
qqH5dNdv8vSU4uMvyfe5qaJtPHwHg2BX4aOqjJ1Cqyy9p4LY5cBFwv4Qt9HiR2ApgOynErnetwzD236XZLl
/LdaXT83SRaqn7wk5uTRUQq0VSY4/eyxERoKF+
aKARmr2OIgYbrvkouZybWpjH6Tr8dBJw9FMsLRJ+
ZPuk57vAaGqXVf1fdg4IC8BahRJQhImkfiyvjg0cOMUuZPzeGU1mIxGCOmMJRaWr79oH8pqZL5a
/cc2B8hD9DEGF3421mrYMYqSoWzgjqs7hTuwz+Bes/4zTCoTatClXJrrw==
nico la s@Nico la s s−MacBook−Pro . l o c a l

Then, copy it and put it in Github: go to github.com, click on your profile picture at the top right,
browse Settings, SSH and GPG Keys, New SSH keys.

The field Title does not matter. Paste the key in Content.

4.2 Try out commands!

4.2.1 Create a new repository

Create a new repository: navigate to https://github.com/new and write down git-tutorial as
the name of the repository. Set the repository visibility to Public. Make sure you put the right
name there!

If you completed the previous section correctly, you should be able to clone the repository you just
created in your workstation. Open a terminal and run the following command:

git clone git@github.com:YOUR USERNAME HERE/git-tutorial.git

You will be prompted for the SSH passphrase you may have entered before. Enter it, press enter and
use ls... You should see a new directory there! It is the git repository that you just created.

$g i t c l one git@github . com : n icoche / g i t−t u t o r i a l . g i t
Cloning in to ’ g i t−t u t o r i a l . . .
The au th en t i c i t y o f host ’ [g ithub . com] : 4 4 3 ([IP] : 4 4 3) ’ can ’ t be e s t ab l i s h ed .
ECDSA key f i n g e r p r i n t i s SHA256 : . . .
Are you sure you want to cont inue connect ing (yes /no) ? yes
Warning : Permanently added ’ [g ithub . com] : 4 4 3 ([IP] : 4 4 3) ’ (ECDSA) to the l i s t

o f known host s .
remote : Enumerating ob j e c t s : 3 , done .
remote : Countring ob j e c t s : 100\% (3/3) , done .

16

github.com
https://github.com/new

Tutorial git

remote : Total 3 (de l t a 0) , reused 0 (de l t a 0)
Rece iv ing ob j e c t s : 100\% (3/3) , done .
$ l s
g i t−t u t o r i a l
$cd g i t−t u t o r i a l
$g i t s t a tu s
On branch master

No commits yet

nothing to commit (c r e a t e /copy f i l e s and use ” g i t add” to t rack)

4.2.2 Exercise

You now have everything you need. We will not work on in-depth exercises as we only covered the
basics of git but you now should be able to versionate code and push it to a repository.

Feel free to play around with git, but in the end, your repository needs to meet the following
requirements:

– Contain three distinct commits, each of them containg a new empty file. They should be named
empty file 1, empty file 2 and empty file 3. Note that they must be created in distinct
commits

– Contain a commit that creates a new file called README.md. It should contain your first name,
a space and then your last name

– Contain a commit that creates a new file called modify me.txt. It should contain the text 2
+ 2 = 5

– Contain a commit that modifies the file called modify me.txt from 2 + 2 = 5 to 2 + 2 = 4
– Bonus: put the code from the last section of tutorial 1 in the executable file guessing game.py

and add features to it. It could be anything, from asking the name of the player and displaying
it when he wins, to restricting the number of guesses the player can make. For each feature,
make a commit

Pay attention to the following points:

– All commits must be made via the command line
– You need to push your commits to GitHub with the command git push. You can do it at any

time and repeat it whenever you want. After a successful push, you can visit the repository
page at https://github.com/YOUR USERNAME HERE/git-tutorial

– At any time, use git status to know what the current status of the repository is. Use git

log to see the history of commits
– This exercise will be automatically corrected so the spaces and filenames are important.

17

https://github.com/YOUR_USERNAME_HERE/git-tutorial

Tutorial git

Files with the wrong name will be ignored!

18

	Foreword
	Objective
	Preliminary setup

	Git
	The why: problems, problems, problems
	The what: Version Control System
	The why you should really really learn using git

	Theory
	Basics & vocabulary
	State of files
	Commits
	Basic commands
	Initialize a git repository
	Inspect a git repository
	Create commits

	Workflow
	Example
	Summing it all in a schema
	One last thing

	Practical exercises
	Getting access
	Create an account
	Setup SSH

	Try out commands!
	Create a new repository
	Exercise

